

Segatm

Windows 95 & NT �Monitor Support Functions Specification

Revision 3.0

Written By

The Igneous Group

12 Oct 95

�
This document defines and describes the Saturn Monitor support functions that are now included in the Windows 95 and Windows NT 3.51 HSI32 library. The Monitor support functions mimic the commands in the Saturn Target Monitor.

By using the Monitor support functions, you no longer need to be concerned about the SCSI, CartDev, Buffer Protocol or other communications issues between the Application and the Saturn Target.

The Application programs can be tools to interrogate the hardware, downloaders or system level debuggers that have intimate knowledge of the Game hardware.

The current version of the Windows HSI32 library includes a set of Monitor functions and two new include files: GAME.H and HSI32MON.H. Both of these must be included to utilize the Monitor functions.

Many of the host function calls return type EC, an error code. There are functions in the HSI32 library that allow mapping between an EC value and the ASCII text associated with the EC value, as well as retrieving the last EC value returned.

Errors from SCSI, ASPI, LIBRARY and now the Monitor functions are returned in the EC return values.

The EC values are comprised of the facility (e.g.: ASPI) and associated errors.

Monitor transactions are characterized by two or more communications with the CartDev. An example of reading the registers would follow these steps:

Setup command data structure with the Read Registers command and the CPU.

Write the command to the CartDev

Wait for the buffer to be turned around (Monitor has responded)

Read the response and data from the CartDev

Fill in the Destination register data structure with appropriate endian

Return to caller with the completed data structure

Errors in communications will occur if the Target Saturn is not running the Monitor or the Monitor has crashed. These are typically buffer timeouts.

The most notable changes in this version of the monitor support is the modification of the data types passed to these functions. It seemed appropriate to convert these functions to the standard types used by all Windows programs.

�
EC MON_Initialize(void)

This initializes the Monitor functions. It must be called prior to calling any of the other functions, and after HSI_Initialize() has been called.

This function sets up the requisite variables and allocates a small memory pool required for data transfers.

void MON_ShutDown(void)

Frees the resources required by this layer. If any of the other MON functions are called after MON_ShutDown() unpredictable results can occur.

EC MON_Stop(GameuPT uP)

This function issues the Monitor STOP command. The processor ID field of the command is set to uP, the processor. Valid processors are the SH2 main CPU, the Sub CPU and the 68K CPU.

EC MON_ReadRegisters(GameuPT uP, void *DestRegP)

This functions issues the Monitor Read Registers command, the processor ID field of the command is set to uP, the processor. Valid processors are the SH2 main CPU, the Sub SH2 CPU and the 68K CPU.

Note that because the register data structure is different between the CPU types, the pointer to the resulting destination register structure is a void pointer. This pointer does NOT have any address space limitations.

EC MON_WritRegisters(GameuPT uP, void *SrcRegP)

This function issues the Monitor Write Registers command, the processor ID field of the command is set to uP, the processor. Valid processors are the SH2 main CPU, the Sub SH2 CPU and the 68K CPU.

Note that because the register data structure is different between the CPU types, the pointer to the resulting destination register structure is a void pointer. This pointer does NOT have any address space limitations .

EC MON_ByteRead(DWORD From, int len, BYTE *Dest)

This function issues the Monitor Byte Read command. The source address is filled with the From field, the transfer length is len. The output data is placed in the memory pointed to by the Dest pointer. It is up to the caller to ensure that the Dest area is able to contain at least len bytes of data.

The destination memory does NOT have any address space limitations . If len exceeds the internal memory pool size multiple commands will be issued until len is exhausted.

EC MON_ByteWrite(DWORD Dest, int len, BYTE *From)

This function issues the Monitor Byte Write command. The destination address is filled with the Dest field, the transfer length is len. The input data is read from the memory pointed to by the From pointer. It is up to the caller to ensure that the From area contains at least len bytes of data.

The From memory does NOT have any address space limitations . If len exceeds the internal memory pool size multiple commands will be issued until len is exhausted.

EC MON_WordRead(DWORD From, int len, BYTE *Dest)

This function issues the Monitor Word Read command. The source address is filled with the From field, the transfer length is len. The output data is placed in the memory pointed to by the Dest pointer. It is up to the caller to ensure that the Dest area is able to contain at least len bytes of data.

The destination memory does NOT have any address space limitations . If len exceeds the internal memory pool size multiple commands will be issued until len is exhausted.

EC MON_WordWrite(DWORD Dest, int len, BYTE *From)

This function issues the Monitor Word Write command. The destination address is filled with the Dest field, the transfer length is len. The input data is read from the memory pointed to by the From pointer. It is up to the caller to ensure that the From area contains at least len bytes of data. Note that the source buffer in your Application is always dealt with as bytes.

The From memory does NOT have any of address space limitations . If len exceeds the internal memory pool size multiple commands will be issued until len is exhausted.

EC MON_LongRead(DWORD From, int len, BYTE *Dest)

This functions issues the Monitor Byte Read command, the source address is filled in with the From field, the transfer length is len. The output data is placed in the memory pointed to by the Dest pointer. It is up to the caller to ensure that the Dest area is able to contain at least len bytes of data.

The destination memory does NOT have any limitations of address space. If len exceeds the internal memory pool size multiple commands will be issued until len is exhausted.

EC MON_LongWrite(DWORD Dest, int len, BYTE *From)

This function issues the Monitor Byte Write command. The destination address is filled with the Dest field, the transfer length is len. The input data is read from the memory pointed to by the From pointer. It is up to the caller to ensure that the From area contains at least len bytes of data. Note that the source buffer in your Application is always dealt with as bytes.

The From memory does NOT have any address space limitations . If len exceeds the internal memory pool size multiple commands will be issued until len is exhausted.

EC MON_Go(GameuPT uP)

This function issues the Monitor GO command. The processor ID field of the command is set to uP, the processor. Valid processors are the SH2 main CPU, the Sub CPU and the 68K CPU.

EC MON_GetVersionString(char *DestP)

This function issues the Monitor Get Version String command. The resulting string is copied to the memory pointed to by DestP. The Monitor string will not exceed 64 bytes in length. It is the applications responsibility to ensure that DestP points to an area of at least 64 bytes. The string will be null terminated.

The DestP does NOT have any address space limitations.

EC MON_ReadUBC(GameuPT uP, UBCT *DestUBCP)

This function issues the Monitor Read UBC command. The output data is placed in the memory pointed to by the DestUBCP pointer.

The destination memory does NOT have any address space limitations.

EC MON_WriteUBC(GameuPT uP, UBCT *SrcUBCP)

This function issues the Monitor Write UBC command. The output data is placed in the memory pointed to by the DestUBCP pointer.

The destination memory does NOT have any address space limitations.

EC MON_MakeSafe(GameuPT uP)

This function issues the Monitor Make Safe command. The processor uP will do whatever housecleaning required to re-initialize to a known state.

char * HSI_GetErrorText(EC error)

This function maps the EC value into an ASCII string associated with the EC value. In the event an invalid EC is passed in the returned pointer will be equal to NULL.

This function has been in the HSI32 library from the very beginning, and is included here because it is the only method of mapping an EC value to a character string.

Document Information:

Author:	Geoff Caras		

Last Revised:	�savedate \@ "d MMMM yyyy" * MERGEFORMAT�12 October 1995�

SEGA Windows HSI Monitor functions				Page �page * MERGEFORMAT�6� of � NUMPAGES * MERGEFORMAT �6�

�PAGE �

�PAGE �6�

