bgCon: The Saturn VDP2 Background Converter

v1.6

12/6/95

General

bgCon will read picture files created by common graphics programs, manipulate them, and write them in a number of Saturn-specific formats. Commands may be submitted to bgCon either via a command-line interface or via a script file.

bgCon can output bit mapped or character-oriented data, 1-word or 2-word pattern name data, 1x1 or 2x2 characters, paletted or RGB pixels at any depth that the Saturn supports, and 15-bit or 24-bit palettes. Duplicate and/or reflected characters may be removed from a character set, and the necessary flip bits will be generated automatically. The “palette number” bits in the pattern name data may also be specified. Data may be written in C source format, Gnu assembler format, or binary format, and all data except palettes may optionally be compressed.

In order to allow it to run in batch mode and to accommodate large images, bgCon is a DOS protected mode program, written using Watcom C++, and running under the DOS/4GW DOS extender.

Input Formats

Version 1.6 imports PCX, IFF, and Targa (TGA) files. It can read 1-bit, 4-bit, 8-bit, 16-bit, and 24-bit images. Other formats may be added in future versions, depending on user demand.

Output Formats and Compression

bgCon can output its data in a raw form or as an SGA3 file. If raw data is written, there are no headers or additional information, and it is up to the user to keep track of the sizes and formats of the various types of data. The SGA3 format is defined according to the Electronic Arts IFF standard. SGA3 files contain not only the image data itself, but header information which describes the attributes of the data and which can link (for example) a particular bitmap to a particular palette (for a detailed description of the SGA3 format, see the file sga3d.pdf on the DTS CD-ROM). This makes it possible to write a background viewer which can display any background, regardless of its color depth or whether it is character-oriented or bitmapped. Such a viewer is included with bgCon; it is described in the file bgv.doc.

Raw-format image data and/or pattern name data may be compressed (the current SGA3 specification does not support compression). Version 1.6 supports run-length encoding as defined by the existing CMP library (see Program Library User’s Guide 3, ST-135), as well as a simplified form of the lossless JPEG algorithm which we will call delta/Huffman coding (note that the lossless JPEG algorithm has nothing in common with the lossy algorithm which is normally referred to by the term “JPEG”).

The RLE compression algorithm compresses runs of bytes, words, or long words, according to the type of data being compressed. For example, if the data being compressed is a bit map having 8 bits per pixel, then runs of bytes will be compressed, but, if the bit map has 16 bits per pixel, then runs of words will be compressed. The RLE data that bgCon produces can be decompressed using the SBL routine CMP_DecRunlen() (SGL users may use this routine as well).

The delta/Huffman coding algorithm first delta-encodes the data so that each value is represented by the difference between that value and the previous value. The results of this process are then subjected to a standard Huffman coding procedure. The delta values are computed using byte, word, or long-word arithmetic, depending on the source data. Delta encoding can increase the redundancy of the source data, especially when the data is an image that contains large areas that are almost the same color. Still, for some images (particularly dithered images), delta encoding can do more harm than good. Consequently, bgCon will only perform the delta-encoding portion of the delta/Huffman algorithm if doing so yields an improvement in the compression ratio. The data the bgCon produces using this algorithm can be decompressed using the routine DeHuff(), found in the object module dehuff.o, which is included with bgCon. DeHuff() can tell whether delta-encoding was performed or not, and it will decompress data created by any of the variations of the delta/Huffman algorithm transparently. DeHuff() is written in SH2 assembly language, so it may be called from an assembly language program or a C program. See the file dehuff.h for C calling conventions.

While the delta/Huffman algorithm is not superior to RLE in all cases, it can perform dramatically better than RLE on images that are digitized or dithered or which contain a great deal of shading or texturing.

Other compression algorithms may be added in future versions. LZW compression would be especially nice, however this technology is patented, and Unisys, which owns the patent, tells me that we would need a license in order to use it.

Format Conversion

In general, any time an image is saved, it is automatically converted to the color depth and image type (character-oriented or bit mapped; paletted or RGB) that is selected at that time. If the output image has fewer colors than the input image, then color reduction is performed in a completely unintelligent fashion. If, for example, an image having a 256-color palette needs to be converted to a 16-color image, then bgCon is not smart about constructing the 16-color palette; it simply truncates the 256-color palette and uses the first 16 colors.

Command Syntax

The following commands may be entered either interactively or in a script file (case is not significant). Image format and compression options take effect when an image is saved.

BMSZ <width> <height>	Set the size of the bit mapped image that will be saved by the next S command. When the next image is saved, it will be cropped or padded to this size. Note, however, that loading a new image automatically sets the bit map size to the size of the image.

CD {4 | 6 | 7 | 8 | 11 | 15 | 24}

	Set color depth (in bits) to which future images will be converted. Depths of less than 15 bits imply paletted pixels; depths of 15 or greater imply RGB pixels. The VDP2 does not support color depths of 6 or 7 bits. They are included to facilitate future compatibility with the VDP1, which does support them. The default is 8.

CHSZ {1 | 2}	Determines the size of the characters into which images will be divided. 1 means 1x1 characters; 2 means 2x2 characters. The default is 1.

CM {0 | 1 | 2}	Set color RAM mode, which determines the width of any color palettes that need to be created:

	0 = 1024 15-bit colors.

	1 = 2048 15-bit colors.

	2 = 1024 24-bit colors.

	The default is 1.

CMP {NONE | RLE | DHUFF}	Determine the compression algorithm (if any) that will be used to compress bit mapped data, character pattern data, and pattern name data. Color palettes are never compressed. The RLE format is compatible with the format supported by the existing Saturn CMP library. The DHUFF format is supported by the object module dehuff.o, included with bgCon (see the section Output Formats and Compression for more about these algorithms). The default is NONE.

DUP {ON | OFF}	Determine whether duplicate characters will be eliminated. The default is ON, meaning that duplicate characters will be eliminated from the character set.

FLIP {ON | OFF}	Determine whether characters that are reflections of other characters in X and/or Y will be eliminated. The default is OFF, meaning that reflected characters will not be eliminated. If the command FLIP ON is issued when the character space size is set to 12 bits, the command will not take effect, and an error message will be displayed. If the command FLIP ON is issued when the color depth is set to a value greater than 8, then only elimination of reflections in Y will be enabled. See XFLIP and YFLIP, below.

IF {TGA | PCX | IFF}	Input image format. The default is TGA.

IM {CHAR | BITMAP}	Image mode: determine whether input images will be converted to character-oriented data or left as bit maps. The default is CHAR.

L <filename>	Load an image file in the format specified by the IF command and set the bit map size to the size of the image.

OF {C | ASM | BIN}	Output format: determine whether data will be written in C source format, assembler source format, or binary format. The default is C.

PNSZ {10 | 12 | 14}	Set the size (in bits) of the “character number” field in the pattern name data. Using 10 or 12 bits implies one-word pattern name data, while using 14 bits implies two-word pattern name data. Using 12 bits also implies that reflected characters may not be eliminated, since the flip bits are not present. If the command PNSZ 12 is issued when the FLIP option is ON (see below), then FLIP is turned OFF, and a message to that effect is displayed. The default is 14.

PO <n>	Palette offset: set the “palette number” bits that are included in the pattern name data. There are 7 bits, so values from 0 to 127 may be specified. Not all of the bits may be used, depending on the currently selected pattern name data format. If, for example, you select 1-word pattern name data for a 256-color character set, then only bits 4, 5, and 6 are used. See section 4.6 of the VDP2 User’s Manual for details.

PPP <n>	Set the number of pages per plane to 0, 1, 2, or 4. When the number of pages per plane is set to a non-zero value, character maps are formatted in Saturn-style pages and planes, and the maps are padded using the current padding value (see the PV command, below) until they are an integral number of planes in size. When the number of pages per plane is set to zero, character maps are stored in a linear, row-major format. The default is 1.

PV <n>	Set the padding value to the integer n. The padding value is used to pad bit maps or character maps that need to be enlarged in order to conform to the specified bit map size or to fill out a character page or plane. bgCon has no knowledge of the semantics of this value. It simply copies it blindly into the bit/character map. The default is 0.

Q	Quit to DOS (interactive mode only).

RGBHI {ON | OFF}	Decide whether to force the high bits of RGB pixels. When RGBHI is ON and the color depth is set to 15 or 24, all pixels that match the transparent color (see the TRANS command, below) will have their high bits cleared, and all other pixels will have their high bits set. The default is OFF.

S <filename> [<label1>] [<label2>] [<label3>]

	Save all components of the currently loaded image in raw format to the specified file.* The first label, if present, is affixed to the image data (i.e. the character data or the bit map data). The second label, if present, is affixed to the palette. The third label, if present, is affixed to the pattern name data (if any). If the output format is set to ASM, then the labels will be declared global.

SGA3 <filename> [<imageID>] [<palID>] [<patnameID>]

	Save all components of the currently loaded image to the specified SGA3 file.** Bitmaps are saved as BMP4, BMP8, BM15 or BM24 chunks. Character sets are saved as CP04, CP08, CP11, RC15 or RC24 chunks. Pattern name data is saved as a CMap chunk, and palettes are saved as Pa15 or Pa24 chunks. The optional arguments are the chunk IDs that will be assigned to each of the chunks. The CMap chunk (if any) will reference the chunk containing the character
